
H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 1

Development of an OO Energy Management System us-
ing the ami Approach

Heinz Dobler
CD Laboratory for Software Engineering
Linz, Austria
Tel: ++43 (0)7236/3343-205
Fax: ++43 (0)7236/3343-24
eMail: heinz.dobler@fhs-hagenberg.ac.at

Angelika Mittelmann
VOEST-ALPINE Stahl Linz GmbH

Linz, Austria
Tel: ++43 (0)732/6592-9159
Fax: ++43 (0)732/6592-9138

eMail: angelika.mittelmann@ps.stahl.voest.ada.at

Abstract
VOEST-ALPINE Stahl Linz GmbH is a producer of flat steel situated in Linz, Austria. Planning the design and
implementation of an energy management system using object-oriented technology, we decided to introduce
process improvement in software development in order to overcome problems with the new technology at a very
early stage. We followed the four ami phases closely because we had no experience in using a process model.
Summing up the benefits, we now have a homogeneous software engineering know-how within the project
team, written standard procedures, and better organized as well as excellent documented projects.

Keywords
Capability Maturity Model (CMM), Energy Management System, Object-oriented Analysis and Design (OOA,
OOD), Object Modeling Technique (OMT), C++.

Author's Experience and Expertise
Heinz Dobler studied computer science, worked for six years as assistant at the University of Linz on problems
of programming language implementation and tool building. In his doctoral thesis he concentrated on software
reengineering using source-to-source translation and in the past few years he studied and used object-oriented
techniques in several projects. Since 1993 he is a member of the CD Laboratory for Software Engineering in
Linz and since 1995 he is professor at the Polytechnic University for Software Engineering in Hagenberg.
Angelika Mittelmann studied computer science, was employed as a systems programmer at VOEST-ALPINE
responsible for capacity planning, performance management, tuning and accounting of MVS mainframe com-
puters for eight years. Afterwards she was involved in the information strategy planning, building a corporate
model and developing detail strategies in the fields of UNIX, CAD, CASE, and AI. For the last two years she
was the project and metrics promoter of the ESSI Project 10024 introducing the ami process model.

1. Background Information

1.1. Company, Project Team, and Subcontractor
VOEST-ALPINE Stahl Linz GmbH (VASL) is an integrated iron and steel plant, situated in
Linz, Austria. The software activities of the company are partly dezentralized. On one hand
there is a major department concentrating on development of production planning and super-
vision systems as well as on activities pertaining to financial transactions. On the other hand
there are several small groups of process engineers situated at the main production plants.
The project team for the development of the energy management system (EMS) consists of
six to eight persons coming from both groups. At the beginning of the EMS project they were
mostly skilled Fortran and partly C programmers doing their development work individually
or in very small groups, having no experience in object-oriented software development.
The subcontractor of the EMS project is the Christian Doppler (CD) Laboratory for Software
Engineering, an institution situated at the University of Linz. The CD Laboratory members
mainly provide know-how transfer, bringing the state of the art of object-oriented software
engineering to the industry.

1.2. Objectives
The objective of the application experiment is to test and evaluate advanced object-oriented
technology in order to evolve from the situation of experienced Fortran and C programmers
working in various small project groups using little to no standards at all, to a situation where
• an object-oriented method and language is used,

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 2

• prototyping-oriented and object-oriented life-cycle models are executed,
• effective software quality assurance procedures are installed,
• project management methods are used, and
• programming guidelines and documentation standards are implemented.
The baseline EMS software development deals with forecasting and optimization of energy
production and consumption in an integrated steel plant. In this project an object-oriented
language and the life-cycle model are used for the first time to a greater extent in our com-
pany.

2. ami Process Model
The acronym ami stands for application of metrics in industry and for assess/analyse, metri-
cate and improve. The ami process model was developed in the ESPRIT project 5494, has
been tested in several projects all over Europe, and is documented in the ami handbook
[AMI]. It consists of four phases, each of them having three steps. The basis for ami is the
capability maturity model (CMM) published by the Software Engineering Institute (SEI) of
the Carnegie Mellon University [SEI93a, SEI93b].
The ami method ensures that quantitative approaches are used to achieve relevant company
objectives and to improve the software development process. It especially includes the defini-
tion and use of adequate metrics. A metric is the measurement of a characteristic of a product
or process and can be classified as objective or subjective depending on whether the data is
the result of a counting process or subjective evaluation against a certain scale.

Assess

measurement datametrics specification

primary golas

Ressources
Processes
Products

Environment
Management objectives

Current practices
Customer requirements

reference to goals

reference to assessment

Analyse

Metricate

Improve

Figure 1: ami Process Model

The twelve steps comprising the ami method read as defined in the following table 1:
Phase Nr. Activity
Assess 1 Assess the environment
 2 Define primary management goal(s)
 3 Validate primary goal(s)
Analyse 4 Break down management goal(s) into sub-goals
 5 Check the consistency of the resulting goals tree
 6 Produce a table of questions to identify metrics
Metricate 7 Write and validate the measurement plan
 8 Collect primitive data
 9 Verify the primitive data
Improve 10 Distribute, analyse and review the measurement data
 11 Validate the metrics
 12 Relate the data to goals and implement actions

Table 1: Phases and Activities of the ami Method

3. Project History
In order to install a continuous improvement program in software development, the project
managers decided to follow strictly the ami method as described in the ami handbook. Since

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 3

the ami approach would be an overkill being applied to one project only, the whole organiza-
tional unit of VASL, where the EMS project is situated, was included in the ami cycle.
Starting with an informational meeting (subject "What is ami and why ami?") where the team
members were informed on the ami approach and the goals of the project, the expectations of
the team members concerning the results of the project as well as the obstacles that might
hinder achieving the goals were worked out. In the following we will discuss the implementa-
tion of ami in our organization.

3.1. Phase "Assess"
After the opening session eight projects were selected to participate in the ami program. Ac-
cording to the ami process model they were first assessed with aid of the CMM. For this rea-
son, the CMM questionnaire contained in the ami guide was translated into German and
adapted for our use. Especially the technical terms had to be defined according to the organ-
izational understanding. The questionnaire contains 85 questions, each of them assigned to
one of the five maturity levels (Level 1: initial, Level 2: repeatable, Level 3: defined, Level 4:
managed, and Level 5: optimized) and to one of the catagories "organization", "resources,
personnel, and training", "technology management", "documented standards and procedures",
"process metrics," "data management and analysis", and "process control." The questions are
all yes/no answers. Questions labeled with a hash sign (#) are deemed to have a slightly
greater importance at their level. Everyone starts at level 1. To reach level 2, 80 % of all ques-
tions denoted L2 and 90 % of all questions denoted L2 # must have yes answers. To reach the
next level all questions of the previous levels must have yes answers and the above mentioned
percentages for the level in question must hold.
We are at maturity level 1. The results of our self-assessment (see figure 2) enable us not only
to identify our maturity level but also the main problems of our organization, which trigger
the definition of the management goals.

L e v e l

%
 Y

ES

0 %

2 5 %

5 0 %

7 5 %

1 0 0 %

L2
L2 L3
L3 L4
L4 L5
L5

Figure 2: Results of First Assessment

The assessment results led to the definition of the following management goals: (1) improve
insight into the software engineering process, and (2) record project productivity. During an
in-depth team discussion, the management as well as the team members validated and ac-
cepted the defined primary goals. When we detected during the assessment, that there was a
lack of understanding in the business processes involved in software development we imme-
diately started with training activities in order to improve the understanding of all team mem-
bers in the processes of software engineering (software development process, project man-
agement, configuration management, and quality assurance).

3.2. Phase "Analyse"
Breaking down the primary goals into sub-goals during the following team discussions, we
also checked the consistency of the resulting goals tree (see figure 3).

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 4

Goal 1
Improve insight into SE

Goal 1.1
Write documents

Goal 1.1.1
Write procedure handbooks
Goal 1.1.2
Assort all written standards
Goal 1.1.3
Write SE project documents

Goal 1.2
Write plans

Goal 1.2.1
Write education plan
Goal 1.2.2
Write project plans
Goal 1.2.3
Write test plans

Goal 2
Record project productivity

Goal 2.1
Draw minutes

Goal 2.1.1
Quarterly conf. on SE estimates
Goal 2.1.2
Draw minutes on SE problems
Goal 2.1.3
Draw minutes on test cases

Goal 2.2
Record project data

Goal 2.2.1
Record est./act. project data
Goal 2.2.2
Record comparison of est./act. data
Goal 2.2.3
Record daily actual effort
Goal 2.2.4
Automate recording with SW tool

Figure 3: Goal Trees of Primary Goal 1 and 2

We especially took care of the amount of operational goals. Therefore our goals tree contains
two primary goals, four goals at the second level, and thirteen operational goals. Using the
goal/question/metric method [Basi88] and the entity templates explained in the ami handbook
we worked out the metrics for every goal.

3.3. Phase "Metricate"
The precise specifications of the defined metrics were documented in the measurement plan
in order to enable every team member to understand the meaning and use of every metric. The
structure of a measurement plan as outlined in the ami handbook fitted well in our purpose.
According to the process model the specification is divided into two parts. Part A contains the
metric definitions and analysis procedures, Part B the primitive data definitions and collection
procedures.
Since the assessed organizational unit as well as the performed projects were at the initial
maturity level, we introduced so-called existence metrics besides the necessary qualitative and
quantitative metrics. This kind of metric measures whether or not all needed documents for a
well-organized software development process exist. They are mainly of qualitative and sub-
jective type. Table 2 shows a list of our existence metrics.

Nr. Metric
1 Existence of Procedure handbooks (SE, PM, CM, QA)
2 Existence of Project documents
3 Existence of Education plan
4 Existence of Project plans
5 Existence of Test plans
6 Existence of Software Engineering process minutes
7 Existence of Project minutes
8 Existence of Test minutes
9 Existence of tool for Project Management and its usage

Table 2: Existence Metrics
Table 3 contains the quantitative respectively the qualitative metrics we defined. For a com-
plex metric, built of one or more primitive metrics, the primitive metrics are given in brack-
ets.

Nr. Metric
1 Project Effort (Development, Specification, Rework, Quality)
2 Project Development Time
3 Project Type
4 Project Complexity
5 System Size
6 Number of Changes
7 Number of Document Pages
8 Number of Project Collaborators
9 Number of Training Days
10 Maturity Level (in terms of CMM)

Table 3: Qualitative/Quantitative Metrics

For all projects included in the ami initiative, the primitive data were collected using the col-
lection procedures defined in the measurement plan. Afterwards the primitive data was vali-
dated and verified by the project managers using their historical data.

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 5

3.4. Phase "Improve"
Using the analysis procedures as defined in the measurement plan, the measurement data was
analyzed. The presentation and the review of the data as usually was done during a team
meeting. The validation could easily be done by looking up their graphical representation. In
the following, the data was related to the goals and the team members decided the implemen-
tation of the following actions:
• Documentation of all needed procedure handbooks.
• Daily recording of project development effort.
• On-line availability of document templates for project plan and status report, project met-

rics, customer requirements, and problem reports.
• On-line help for the measurement plan and all procedure handbooks.
• Collection and analysis of defined metrics periodically according to the measurement plan.

3.5. Second Assessment
As the application experiment had a limited time scale we decided to re-assess the organiza-
tion after one year. Normally, SEI assessments are repeated in a two-year-cycle, because im-
proving the organization from one maturity level to the next one takes about two years. The
results of the second assessment (figure 4) show that the CMM makes it possible to measure
and visualize software development process improvements. The reason why our improve-
ments are spread from Level 2 to 4 is that our primary goals do not lead directly to Level 2.

L e v e l

%
 Y

ES

0 %

2 5 %

5 0 %

7 5 %

1 0 0 %

L2
L2 L3
L3 L4
L4 L5
L5

Figure 4: Results of Second Assessment

A comparison of the results of the first and second assessment shows the effect of our goal
definitions on the key areas of the software development process. In case of redefinition of
primary goals these results might be used, too.

4. Lessons Learned
Overall, the main objectives of the application experiment presented in the first chapter have
been met. Table 5 lists a comparison of aims and results.

Nr. Aim Result
1 Usage of OO method and OO language method: in part, language: yes
2 Execution of prototyping and OO life-cycle yes
3 Installation of effective SQA procedures some
4 Usage of project management methods yes
5 Usage of prog. guidelines and doc. standards yes, especially for documentation

Table 5: Comparison of Aims and Results
Some comments concerning the results: (1) The OO method involved (OMT) proved intuitive
and has been used for analysis, design, and documentation – but not for code generation. The
selection of C++ as an OO implementation language proved to be a success, although inten-
sive training was necessary. (2) Prototyping has been used from the very beginning of system
implementation. (3) The effectiveness of the SQA procedures (mainly code review) is ques-
tionable. (4) Programming guidelines have been defined, their usage is not checked strictly,
but documentation standards are strictly imposed by tools (e.g. DocToHelp).
In the following sections, we give some more details of the lessons learned structured in four
groups: ami process model, metrics, human/organizational factors and OO technology.

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 6

4.1. ami Process Model
The goal-driven approach of ami turned out to be very useful, because the link of the metrics
and agreed actions to the goals improves the understanding of the whole process. The CMM
makes it possible to measure the progress of the improvement program in a practical manner.
The wording of a measurement plan turned out to be a necessity in order to enable its perma-
nent use. The only problem encountered was that the individual goals and metrics set is not
transferable without changes to any other organizational unit even of the same company. The
reason for this is that every organizational unit might suffer from different problems and
therefore only other goals and metrics can lead to the desired effect.

4.2. Metrics
If the maturity level of the organization is relatively low (less or equal to 2), it is advisable to
use a greater amount of qualitative metrics. They are easier to understand by people inexperi-
enced with metrics. Getting familiar to metrification, some of the qualitative metrics might be
changed to quantitative ones. We also developed a special form of qualitative metrics which
we call existence metrics. These metrics check, whether necessary documents for an orderly
execution of the software engineering process and all related processes in software engineer-
ing exist in an adequate form. They are mainly of qualitative and subjective nature.
When metrics are introduced first, there is no possibility of comparisons. Therefore they are
less useful at the beginning, but keeping them for a reasonable period of time makes them
very useful for later projects. In this connection it must be emphasized to use the same metrics
set for a reasonable period of time in order to get statistically relevant data.

4.4. Human/Organizational Factors
It cannot be overemphasized that management involvement is the key critical success factor
for installing ami in an organization. A second prerequisite is to find an engaged employee
accordingly skilled in software engineering as well as in project management to play the role
of a metrics and project promoter. For convincing the team members to buy-in the new tech-
niques the opinion leaders have to be won first. Enough budget and time should be planned
for training activities involving all team members.
External skilled help by persons experienced in object-oriented analysis and design acceler-
ates the know-how transfer. We also found that the software development process is much
better understood, if it is well documented. Gaining the necessary documentation by all team
members intensifies this effect. The prepared document templates facilitate the documentation
of user requirements and problems as well as the reporting of the project plan and status.
Organizational restructuring during project life-time makes it difficult to achieve the defined
goals at first sight. It is still too early to decide on all effects of the restructuring, but it is clear
that it offered the chance to spread the ideas worked out in the ESSI Application Experiment
within the company. At least one other project (implementation of a gas pressure control sys-
tem in the steel production process) has been successfully brought to an end using our ap-
proach. So it will be used in future projects as well.

4.5. Object-oriented Technology
We decided to use Rumbaugh's Object Modeling Technique (OMT) for analysis and design,
supported by the tool Select OMT with its extensions of the Jacobson method (use cases). It
seems that this combination is superior to the original OMT, because use cases are more eas-
ily understood and modeled than state transition diagrams. Although the tool is a low-cost
one, it is easy to use and very well suitable for design documentation. Code generation still
suffers from difficulties of translating class relationships.
The GUI builder we are using is object-oriented and obviously allows very rapid development
and usage of inheritance in an elegant manner. The only disadvantage is the "dissipation" of
code fragments, which is inherent to the object-oriented technology itself. Provided that they
are fairly complicated, the absence of a good class browser makes it difficult to gain an over-
view of the class relationships and also the inheritance hierarchy.

H. Dobler, A. Mittelmann 3rd EAUG October 1st, 1996; Page 7

For C++ programming on the Unix, we use a class library offering container classes and data
types, and which supports task communication, access to RDB's and garbage collection.

Acknowledgment
We want to thank the reviewer for the encouragement and the useful comments.

References
[AMI] ESPRIT project 5494: ami application of metrics in industry, Metric Users' Handbook. Eigenverlag

ami User Group, o.O. o.J.
[Basi88] Basili, V.R.; Rombach, D.: The TAME project. Towards improvement-orientated software environ-

ments. In: IEEE Trans Soft Eng, 14 (1988) 6, S. 758 - 773.
[SEI87] Humphrey, W.; Sweet, W.: A Method for Assessing the Software Engineering Capability of Contrac-

tors, Technical Report, CMU/SEI-87-TR-23. SEI Carnegie Mellon University, Pittsburgh 1987.
[SEI93a] Paulk, Mark C.; et al.: Capability Maturity Model for Software (Version 1.1), Technical Report,

CMU/SEI-93-TR-24. SEI Carnegie Mellon University, Pittsburgh 1993.
[SEI93b] Paulk, Mark C.; et al.: Key Practices of the Capability Maturity Model, Version 1.1, Technical Re-

port, CMU/SEI-93-TR-25. SEI Carnegie Mellon University, Pittsburgh 1993.

	Abstract
	Keywords
	Author's Experience and Expertise
	1. Background Information
	1.1. Company, Project Team, and Subcontractor
	1.2. Objectives

	2. ami Process Model
	3. Project History
	3.1. Phase "Assess"
	3.2. Phase "Analyse"
	3.3. Phase "Metricate"
	3.4. Phase "Improve"
	3.5. Second Assessment

	4. Lessons Learned
	4.1. ami Process Model
	4.2. Metrics
	4.4. Human/Organizational Factors
	4.5. Object-oriented Technology
	Acknowledgment
	References

